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On plane linear magnetohydrodynamic waves 

By LEON TRILLING 
Massachusetts Institute of' Technology 

(Received 27 June 1961 and in revised form 16 October 1961) 

This paper investigates the perturbation modes of the steady parallel flow of a 
compressible fluid of finite constant viscosity and electrical conductivity in a 
uniform arbitrarily oriented magnetic field. In  particular, in addition to the 
classical fast and slow sound and Alfvh modes, one obtains some waves whose 
amplitude is finite whenever the diffusive coefficients are finite and which re- 
semble the diffusion of vorticity from stream surfaces in classical hydrodynamics. 
The paper also re-interprets upward-facing MHD waves and upstream wakes 
in a new way. 

1. Introduction 
The purpose of this study is to investigate the perturbation modes of the 

steady parallel flow of a compressible fluid of finite constant viscosity and 
electrical conductivity in a uniformly oriented magnetic field. 

The equivalent problem for a non-conducting viscous gas was considered by 
Lagerstrom, Cole & Trilling (1  949), who developed useful asymptotic techniques 
and showed how the perturbation motion may be decomposed uniquely into a 
vorticity-diffusion component and an irrotational diffusing wave component. 
It was then shown (e.g. by Trilling 1955) that the addition of the terms required 
to account for finite thermal conductivity introduces an additional entropy 
mode which is linearly independent of the vorticity and pressure wave modes 
when the Prandtl number is $. 

The Oseen small disturbance motion of an incompressible steady viscous 
conducting fluid has been studied by Gourdine (1961), who constructed a funda- 
mental solution made up of three linearly independent modes; while these do not 
separate the effects of pressure, viscosity and conductivity, their asymptotic 
expansion at  large distances from the origin allows such separate combinations 
and makes it possible to construct three of the modes studied in this paper. 

Other studies of the same problem of linearized incompressible real plasma 
flow were reported by Imai (1960) who stressed specific solutions at low magnetic 
Reynolds numbers where the magnetic force may be considered as given in- 
dependently and by Busemann (1961) who presented a particular flow pattern 
for the case where the magnetic and hydrodynamic Reynolds numbers are equal 
and the magnetic pressure is equal to the dynamic pressure. 

One of the points which are brought out clearly by Busemann and also by 
many other investigators (e.g. Sears & Tamada 1960 and Stewartson 1961) is 
the possibility that when the magnetic pressure exceeds the dynamic pressure, 
there exists a wake upstream of an obstacle and that therefore the conventional 
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specification of boundary conditions for flow past an obstacle may need re- 
examination. The experiments available at present are not yet conclusive on 
this point, though there is some qualitative indication of a strong upstream 
influence (Liepmann 1961). 

A t  the same time, many solutions for highly conducting incompressible and 
compressible plasma flows past thin bodies were presented by Sears, Resler, 
McCune and others at Cornell University (e.g. Resler & McCune 1960; Lary 
1960)) by Kogan (1959) in the USSR and others, and they indicate that in some 
flight regimes there must be waves slanted upstream in the flow pattern. 

While this considerable body of literature increased the concrete knowledge 
available on some specified steady flow patterns, the propagation of waves in 
plasmas and also in more general anisotropic continuous media was the subject 
of numerous studies (see, for example, Cole & Lynn 1959; Whitham 1960; 
Staniukovich et ab. 1956; Gogosov & Barmin 1961)) which generalized our 
understanding of complex propagation phenomena and clarified the relation- 
ships between Alfven waves and slow and fast MHD waves. 

The purpose of the present investigation is to apply the apparatus of plane 
asymptotic wave-solution combinations to make a systematic qualitative survey 
of the effects of finite compressibility, viscosity and electrical conductivity on 
plasma flows. All of the modes and patterns found by Gourdine, Kogan and others 
are again obtained and some new general modes are also found. An attempt is 
made to interpret the upstream wake as a singular perturbation phenomenon 
associated with Alfvhn waves in a dispersive medium. The nature of upstream- 
facing MHD waves is also considered from several points of view, not only as 
the result of the classical method of Huyghens constructions, but also as the 
solubion of a quasi-wave problem which has a positive rather than a negative 
diffusion coefficient and is therefore consistent with the second law of thermo- 
dynamics. Finally, by gathering and exhibiting together all the modes possible 
in a compressible viscous electrically conducting fluid, this study may offer 
helpful leads to an analysis of the proper boundary conditions and stability 
criteria for the flow of such a fluid. 

2. The equations of motion 
The laws of physics, applied to a slightly disturbed electrically conducting 

compressible viscous fluid in rectilinear translation through a uniform magnetic 
field, take the following form in Cartesian co-ordinates xi, using the Einstein 
summation convention. 

Conservation of mass : as as auj -+u.-+- = 0. 
at 3 ax j  ax* ( 1 )  

Conservation of momentum: 
aui au. 1 as abj abi 1 azui 1 a Z u .  
- + u . L + - - + p c o s ~ .  --- -- ~ +---). 
at 3 axj  i w 2 a x i  3 ( axi ax) - R ( axj  axj 3 axj axi ( a )  

Maxwell's equation: 
abi ab. au . aui 1 a2bi 
- +U.-+cosai--2-cosa.- = -~ 
at 3 axj axj  3 axj  R,axjaxj* (3) 

18 Fluid Mech. 13 
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In  equations (1) to ( 3 )  the position co-ordinates x i  are divided by a reference 
length L and time is divided by the reference time LIU,, where U, is the un- 
disturbed velocity. The dependent variables are defined as follows: ui is the 
velocity perturbation in the xi-direction referred to the velocity U,; s is the 
condensation (p  -p,)/p,, where p, is the density of the undisturbed fluid; bi 
is the magnetic field perturbation in the xi-direction referred to the undisturbed 
field intensity B,. In  addition to the flow velocity U, whose direction cosines 
are designated by C$ and the field intensity B, whose direction cosines are cos ai, 
the following parameters are needed to describe the flow: M = Urnjam is the Mach 
number, where a, is the reference speed of sound; B2 = B:lpmp, U: is the ratio 
of magnetic to dynamic pressure, where p, is the magnetic permeability of the 
fluid (assumed constant); R = U, Ljv, is the hydrodynamic Reynolds number, 
where v, is the kinematic viscosity coefficient of the fluid (assumed constant); 
R, = p, aU, L is the magnetic Reynolds number, where c is the electrical con- 
ductivity of the fluid (assumed constant). 

Two major physical assumptions are made in specifying equations (1)  to ( 3 ) .  
In  the absence of heat conduction, the viscous and Joule dissipation is propor- 
tional to the square of small perturbation gradients and therefore the linearized 
flow is isentropic. Also, displacement currents are neglected. 

Under these conditions, the seven equations (1)  to ( 3 )  are partial difl'erential 
equations with constant coefficients and have formal solutions 

where wji is a reduced frequency and h,/i a wave-number component in the 
i-direction. Substitution of (4) into (1) and ( 3 )  gives 

- 
$(t, xi) = $(w,  hi) ewt+Ai"i, (4) 

= -hj%j/(fd+hkUk) 

and 
- it. h . cos uj - uj b .  = - L  3 
' w+h,cU,-R,iilhjhj 

When ( 5 )  and (6) are substituted into ( 2 ) ,  a single-vector equation for the velocity 
perturbation is obtained 

Equation (7) is the fundamental small disturbance equation, several special 
cases of which are studied below. 

3. Some simple wave flows 
The simplest example of (7) is the acoustic problem for which 

I/& = l/Rfil= B = 0 

so that (7) becomes M2u,(w+hj  Uj)2-UjAjhi  = 0. 
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The wave-numbers hi are computed by requiring the determinant of the coeffi- 
cients of i& in (8) to vanish, i.e. 

M4(~fhj~')4[M2(~fhi~')2-hEhk] = 0. (9) 
This gives the two familiar solutions of constant properties along a stream surface 
and propagation at  the speed of sound with respect to fluid particles. The next 
example concerns viscous acoustic waves; R is now finite; B and l/RM still 
vanish. Then, 

and the wave-numbers hi satisfy the following relations 

H 4 ( 0  + hi Uj)z [(w + hj V,.) - R-l& hkI2 

x [H2(~+hi~)2 -hkhk -~M2R- - lhEhy(~+hiU, ) ]  = 0. (11)  

The first bracket represents the transverse mode of viscous diffusion of vorticity 
from stream surfaces, while the second represents a diffusing longitudinal 
acoustic wave. The factoring of (1  1) describes the splitting phenomenon dis- 
cussed by, among others, Lagerstrom et al. (1949). 

Another simple case is that of the plane longitudinal magnetohydrodynamic 
wave in an electrically and mechanically ideal fluid. If the %,-axis is taken along 
the U,-velocity direction, then A, = A, = 0 and cos a, = cos 0; cos a, = sin 0; 
cos a3 = 0, where 6 is the angle between the undisturbed field and the undisturbed 
velocity. 

The equations of motion for that case are 

U,[M2(w + A), - (1 + M2B2 sin2 0) h2] + E,M2B2h2 sin 0 cos 0 = 0, 
- Z L , ~ ~ B ~  sin0 cos 8 + U,[(W + A), - Bzh2 cos2 01 = 0, (12) 

(13) 

which yield the roots 

(W + h)'/h2 = [ 1 + M2B2 {( 1 + M2B2)' - 4MzBz COS' 0}i]/2M2. 

These are the fast and slow magnetohydrodynamic waves. In  particular, if 
there is no convection velocity and w ,  B are redefined in terms of the speed of 
sound as w = w'/M, B = B' /M,  then (13) becomes 

(w'/A')' = c2/a2 = $[ 1 + B" { (1 + B")' - 4B" COS' 0}4] (13a) 

from which the Huyghens wave-fronts for MHD waves may be constructed 
(see figure 1). 

This Huyghens construction gives a convenient technique for studying plane 
flows of various regimes, as Resler & McCune (1960) and Kogan (1959) have done. 
It shows the wave-front arrangement and the flow patterns which would result 
from the superposition on it of a uniform velocity of arbitrary direction and 
magnitude. A simple geometrical construction shows that off the axis parallel 
to the B field vector, four tangents to the wave front may be drawn from any 
point inside the cusped triangles or outside the oval, and two from any point 
inside the oval but outside the triangles. In  fact the four tangents for an 
inside point P are shown on the sketch in figure 3 ;  as F crosses the curve AC', 
the tangents T,, T, are lost; T, and T, are retained. 

18-2 
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As F approaches the axis, the tangents T,, T, go through AA'. Similarly, a 
point F' in the two-wave region between the triangles and the oval has two 
tangents (and the flow whose velocity vector ends at F' has two wave and two 
elliptic solutions) except when F' goes to the axis. One may think of the axis 

FIGURE 1. Variation with angle 0 of phase and group velocities when 
the ratio of Alfvin velocity u to sonic velocity G is 2* and 2-*. 

itself as a wave-front (F'A; FA') which slides parallel to itself along lines of 
magnetic field; it allows no force discontinuity across it, but serves as a vortex 
sheet and a current sheet. A point on it travels along the field lines at a speed 
ba/(az + b2)*, where b is the normal Alfvbn speed and a is the speed of sound. 

To study these special transverse waves, one may consider the singular limiting 
process which occurs when the field B makes a small but finite angle 8 with U,; the 
two roots of the characteristic equation disappear as sin 8 and take two boundary 
conditions with them. 
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In  fact, equation (7) for two-dimensional steady problems with finite 8 yields 
the roots 

M2A; - (A; +A:) [( 1 + M2B2) A! - B2(h, cos 8 + A, sin 8)2] = 0. (14) 

This fourth-order equation for A, (or A,) becomes quadratic for 8 = 0 (parallel 
field) where i t  takes the form 

FIGURE 2.  Huyghens construction for the inner (forward-facing) MHD 
waves when the field is not aligned with the stream. 

and biquadratic for 8 = in (crossed field) where it yields 

(16) 
1 + B z ( M 2  - 1) {[l +B2(M2 + 1)12 - 4M2B2}* 

t 2  = (2) = __ ~- .____ 
2B2 

which has two positive roots, if M 2  > 1/( 1 -B2)  (speed greater than 1 +M2B2,  
point D), and one positive root, if M2 < 1/(1 -B2) (point E). If sin8 < 1 then 
(14) takes the form 

B2 sin2 8t4 + 2B2 sin #t3 + [B2( 1 - M2) - 11 k2 
+ 2tB2 sin O +  (H2- 1) (1  -B2) = 0, (14a) 

and has two sets of roots, one of which is given by (15) and the other is pro- 
portional to sec8, 

The t3, ,-solutions represent two sets of wave-fronts almost parallel to the 
xl-axis, one of which always slopes upstream and, if B2 > 1/(1 - M 2 ) ,  the other 
also (in the elliptic region of Resler & McCune). The region of influence of a dis- 
turbance t,,, is a thin triangular hyperbolic boundary layer about the xl-axis, 
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which always faces upstream and sometimes also downstream. The boundary-
layer thickness is O(sin  8). If the total disturbance consists of a finite zc,-velocity
disturbance (e.g. a thin body) then there are in this electric boundary layer finite
ul-, b,-disturbances  which in the limit of 0 + 0 yield current and vortex sheets
on the surface of the body and upstream of it but induce no force, and finite
ug-, b,-disturbances  associated with the cl,% roots.

A more general case of (7) is obtained if the velocity cosines q are left arbi-
trary, but the x,-axis is aligned with the magnetic field B,. In that case, for the
ideal fluid, cos CQ = 1; cos CC~  = COB 01~ = 0; l/R = l/R, = 0 and the determinant
of coefficients in equation (7) takes the form

M2(oJ+hkUk)2-A~ -4h2

--hIA M2(w + hkiIQ2  -A; - M2B2(h2,  + A;,)
-h& -h,h,(l+1M2B2)

-h&
-h2h,(l+M2B2) = 0. (18

M2(w + A, UJ2 - A”3 - &12B2(A;  + A;)

After a certain amount of manipulation, it can be shown that (18) leads to the
following relation for the wave-numbers hi:

[(u + A, Uk)2 - h2, B2]

x (M2(~+hkUk.)4-~hkhk[(l  +M2B2)  (w+A~U~)~-A~B~]}  = 0, (19)

which is the most general ideal-fluid perturbation equation because it is three-
dimensional and allows an arbitrary angle between fluid flow and magnetic field.
To generalize it formally, by allowing all cosaj to have non-vanishing values,
involves a rotation of axes. Since all operators except h2,B2 are independent of
axis orientation, the formula is generalized simply by replacing B2hT by

B2hi hi CO9 pi CO9 “i.

Equation (19) shows that the sixth-order system splits into a second-order
equationwhichrepresentsapairofAlfvenwavesandafourth-orderequationwhich
represents a fast and a slow set of MHD waves. The Alfven waves are transverse
waves which move at the appropriate velocity B with respect to the fluid along
the direction of the magnetic field lines; no (ur, s, b,)-discontinuities  occur across
them, but there may be disoontinuities in the components (u,, us, b,, b3) which
are tangent to the wave-front; in fact, this special solution may be found by
inspection of the original system (1) to (3).

An observer who rides with the fluid and observes an Alfven wave sees a front
which satisfies the relation

A; - B2(h, cos 8 + A, sin 8)2 = 0, (19a)

or
2 _ -Bcos8+ 1h
h,- Bsin0 ’ (lgb)

where the minus sign applies to waves ‘ above ’ (x2 > 0) the source. When cos 8 = 0,
these reduce to h,/h, = & l/B which are the conventional Alfven waves pro-
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pagated along normal field lines. When B cos 8 < - 1, the wave-front has aforward 
streamwise velocity component greater than the convection velocity. Therefore 
it propagates upstream as it moves upward (away from the moving observer). 
The slope of the characteristics decreases as sin 0 + 0 so that in the case of an 
almost parallel field, the Alfvbn wave-train appears to become an upstream wake. 

In  plane flows there can be no Alfven modes because (for x parallel to the 
B vector) 

so that one must have av/ay = 0. Since far from the disturbance source ( y  -+ co) 
perturbations must vanish, it  follows that v E 0. This result is similar to the 
result obtained for linearized (Prandtl-Glauert) transonic flow which cannot 
exist in two dimensions but gives Jones slender-body theory in three dimensions. 

The fourth-order equation in (19) represents a combination of fast and slow 
waves: it is a generalization of (14) and carries a full complement of perturba- 
tions. Many special solutions of this set have been given in the literature. Note 
that if the field is aligned with or normal to the magnetic field, there are one or 
two pairs of waves (the equation becomes quadratic or biquadratic), while in the 
case of an arbitrary angle there are four separate roots which may be found from 
the Huyghens construction. 

(19c) (au/ax) + (avpy )  = 0 (u O), 

4. Plasma flows with finite conductivity and vanishing viscosity 
When finite conductivity (R,) is introduced into the problem, all the magnetic 

terms are multiplied by the factor [l-{A,hk/RM(~+h,U,))]-l as can be seen 
from (6); (19) becomes 

[(w+A,U,) ( w + A k U , - A k h , R ~ ~ )  -A:B2] 

x ( M y w  + A, u,)4 (1 - (A,A,/R,(w + A, U,)) 

-A,A,[(u+A,U~)~ (1 +M2B2-{AkA, /R~l (~+AkU,)} ) -A~B2]}  = 0. (20) 

The split into Alfv6n waves and a pair of MHD waves is still found, but all the 
waves now have a diffusion pattern superposed on them. 

For example, the Alfvbn mode in a parallel field satisfies the equation 

(W +A,)'- A; B2 = (W + A,) B;;;'A,jAj. 

(1 - B2) A, = A,jAj/R,, 

(21) 

(22) 

which is almost identical with the vorticity diffusion component of the Oseen 
equations (see Lagerstrom etal. 1949). But while inthe Oseen flow the coefficient of 
the first-order term is always positive, here its sign changes when B2 goes through 
unity. This is due to the fact that a collapsed wave pattern rather than a wake is 
diffusing. The fundamental (source) solution of (22) in two dimensions is 

7cr = e x p { ~ ( 1 - B 2 ) R M x l ) R o [ + ( 1 - B 2 ) R , r ] ,  where r = (x;+x%)*, (23a)  

In particular, if the flow pattern is steady, (21) becomes 

and in three dimensions, 

$ = r-l exp [+( 1 - B2) R,(x, - rl1- B21(1- B2)-l)], r = (x: + z; +x,")g. 
( 3 3 b )  
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Therefore, if 1 - B2 > 0,  then the flow pattern includes a wake-like pattern 
downstream of the source which diffuses as xi*, but, if 1 - B2 < 0 ,  the pattern is 
located upstream; such upstream propagation for axially symmetric geometries 
may have been observed in Prof. Liepmann’s laboratory at the California 
Institute of Technology. 

In  the general case of a magnetic field at  an arbitrary angle 8 with the velocity 
vector, in steady plane flow, one finds that 

* (24) 
A, 
hl 

- B2 sin 8 cos 8 t- {B2 sin2 6’ + (hi/-&) ( 1  - B2) - (hl/R,)2)& 
B2 sin2 8 + (h,/R;) 

_ -  - 

If sin 8 = 0, R, 9 1, and this leads to the solution (23); but if the limiting process 
is carried out in the alternate order l/RM = 0, Bsin 8 < 1,  the answer is 

h2/hl = sec 8( - B 5 l)/B, ( 2 5 )  

which is a solution of the form discussed in connexion with equation (17 ) .  The 
parameter of physical significance is RMB2sin28, the ratio of the squares of 
the thicknesses of the current sheet and the electric diffusion layer. Its behaviour 
as sin 8 -+ 0, R, + m determines the flow structure and the nature of the electric 
boundary layer. 

If cos 8 = 0 (crossed fields), then the solution 

( 2 6 )  

represents a diffusing Alfvkn quasi-wave of the LCTl type. Its asymptotic 
solution for large RM, for the case of a step input, for example, is 

The MHD mode is similarly affected by a finite R,. The formula (20) for 
MHD waves may be rewritten: 

Ri;l’(o + A, U,) - [ ( w  +A, U,)2 ( 1  + M2B2)  
-h2,B2+ (M2/R,) ( ~ + h , U ~ ) ~ ] h ~ h ~ + ~ ~ ~ ( ~ + h , U ~ ) ~  = 0. (28) 

When R, -+ 03, the asymptotic solutions are 

and 
(W +A, U,)’ (1 + M2B2) - h2, B2 = (W +Ak U,) hjhi/R, 

M2(ol+h U ) 4  
-~ I2 ‘c- -h.h. 
( 1  + M2B2) (8 + A, UJ2 - B2h: 

(29 a )  

hihi. (296) 
w +A, U, B2(o + A, U,)2 [ M ~ ( w  + h L!!---. U,)2  - h2,] -~ - 

R, [( 1 + M2B2) (W +A, Uk)2 - B2h;]2 

Equation (29a)  is similar to the damped Alfvh equation, but the propagatmion 
velocity of this mode is B/( 1 + M W ) &  instead of B. The same type of upstream 
or downstream wake pattern is possible as for Alfvkn waves, but for parallel 
fields the critical line is B2 = l / ( l  -M2) instead of B2 = 1. In  fact, the solution 
(29a)  represents the diffusion of the wave defined by L& in equation (17 ) ,  
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namely, the vortex sheet and current sheet situated along lines of magnetic field 
which move at a velocity B/( 1 + M2B2)* (the velocity appropriate to the inner 
cusp A on the Huyghens wave construction). On the other hand, (29b) represents 
a damped MHD wave; its left-hand side represents an LCTl damping, whose 
intensity depends on the flow pattern; in particular, different Fourier com- 
ponents have different diffusion rates and waves propagated in different direc- 
tions have different diffusion rates. 

A special example of some possible interest is steady flow with a parallel field. 
In that case (w+hkUk) becomes A, and ( 2 9 b )  becomes 

where the partial differentials are introduced for the operators hi. This equation 
is similar to the LCTl equation for steady small disturbance supersonic viscous 
flow. An interesting feature of this equation is that, at  first glance, one may think 
that for some combinations of M and B the diffusion coeEcient on the right-hand 
side is negative; a more careful analysis shows that this is not so. Indeed, the 
flow consists of five regions. 

(i) M 2  < 1;  B2 < 1 :  elliptic case; positive diffusion. 
(ii) M2 < 1;  1 < B2 < l/(l -&I2): hyperbolic case; the diffusion coefficient 

is negative; but this is the region of upstream facing waves and therefore a/ax, 
is negative, so that the diffusion is positive. 

(iii) M2 < 1; I / (  1 - M2) > B2: elliptic case with positive diffusion coefficient. 
(iv) M 2  > 1; B2 < 1: hyperbolic case; the diffusion coefficient is positive; the 

(v) M 2  > 1; B2 > 1: elliptic case with positive diffusion coefficient. 
waves are swept downstream so that a/ax, is positive. 

The conclusion of this discussion, then, is that third-order damping always 
occurs in a manner similar to that predicted by the LCTl theory; but that, in 
order to insure this, it  is necessary to have upstream propagation of disturbances 
in region (ii) as the Huyghens construction suggests. Note also the singular 
behaviour of the waves when [I- B2( 1 - M2)] -f 0 and the wave pattern merges 
into the upstream wake of (29a). 

For unsteady one-dimensional waves, the basic equation is obtained from 
(28) by writing A, = h cos 8, A,< U ,  = A, h,h, = h2. The result is 

€ ~ 4  - [( 1 + ~ 2 ~ 2 )  (w + ~ ) 2  - ~ 2 ~ 2  cos2 e + e ~ w ( w  + 4 2 1  ~2 + M ~ W  + h)4 = 0,  

6 = (w+h)/R,. (31) 

After some manipulation, the solution of (34) for small E becomes 

2M2v+)2 = 1 + M2B2 A {( 1 + M2B2)2 - 4M2B2 cos2 O}t  

. (32) 
1 + M2(B2 - 2 cos2 j 8 )  

+ e M 2  [l? 
{( 1 + M2B2)2 - 4M2B2 cos2 8}& 

This formula consists of two parts; the non-diffusive part is identical with 
equation (13) and the part in square brackets gives the LCTl diffusion for fast 
and slow waves as a function of the angle between stream velocity and mean 
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field. Replacing the operators w and h by their values in terms of partial deri- 
vatives, one may rewrite (32) as 

DZ+ 1 + ~ 2 ~ 2  2 (( 1 + J P B ~ ) ~  - 4 ~ 2 ~ 2  cos2 8)s a2$ ~- ___._ __ 
Dt2 2M2 ax2 

where D/Dt is the substantial operator @/at) + @/ax). In  the absence of convec- 
tion, with sonic speed instead of convection speed as velocity reference, the 
generalization of (1 3 a) becomes 

a2$ 1 + ~ ’ 2  (( 1 + ~’2)2  - 413’2 eos2 e p  a2$ 

at’2 2 a x 2  
__- - _ _ _ ~  __ 

While equations (33) and (33a) are quite general, several particular cases are of 
interest. When the fields are aligned, then cos 8 = 1, and (33) becomes 

or 

These solutions represent a sound wave (34b) and a diffusing Alfvh wave (34c) 
as expected, since in the case of aligned fields the magnetic and acoustic com- 
ponents split and the acoustic problem is independent of electrical conductivity 
effects. In  the crossed-field case, where cos 8 = 0, one has 

(35) 

as one might have expected. Note also that the diffusion coefficient in (33a) 
is always positive because 

(1 + B’2)2 - 4B’2 cos2 8 - (1 + B’2 - 3 cos2 8)2 = 4 sin2 8 cos2 8 2 0, (36) 

the equal sign occurring in the limiting cases considered explicitly above. The 
same cannot be said of (33) where the sign of the quantity in brackets depends 
on the sign of - 1 + M 2  cos2 8. This merely suggests the presence of mixed waves 
propagating upstream in the manner discussed in connexion with equation (30), 
case (ii). 

Returning to the solutions of (20) for low values of the magnetic Reynolds 
number R,, the diffusing Alfv6n mode becomes harmonic (Trilling & Kaplan 
1961) while the MHD wave solutions become 

DZ+ 1 + ~ 2 ~ 2 a 2 *  1 D ask 
Dt2 ~2 ax2 ~ ,Dtaxz  , 
__-____.__ - _____ - 

= M2(W f Uk)’ +R&fB2{(W uk)”-;)/(w + hk u k ) ,  (37a) 

hkhk = + uk) .  (37 b )  
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5. Plasma flows with finite viscosity and infinite conductivity 

fundamental equation (7) has two separate sets of solutions. The first is: 
If one now considers finite viscosity (R) and no resistivity (RM -+ CQ) the 

(W + A, U,) ( 0  + A, U, - R-lh, hj)  - B2Aj A, cos 0 1 ~  cos = 0 (38a)  

with u.h.  3 3  = 0,  UjCOSUj = 0. (38b)  

This is identical with the damped Alfv6n pattern of (20), with the viscous 
Reynolds number replacing the magnetic one. It gives the same shear waves and 
the same opportunity for upstream influence. The other wave system satisfies 
the equation 

In  particular, if B = 0, (39) reduces to the longitudinal component in (11). In 
general, if one follows the scheme of (28), one obtains a set of formal roots whose 
asymptotic expansions for R -+ co are (with the x1 axis along B )  

1 (w+A,U,)~--A:B~ 
uR (1 + 3l2B2) (w +A, Uk)2 - h2, B2 (w + A, U,)2 -At B2 

(doc) + 
h2, B2[M2(w + A, U,)2 - A 3  

[( 1 + M2B2) (w +A,  ?JJ2 - h2,B2]2' 
For plane steady flow, one obtains 

1 - 9  1 B2(M2 - 1) 
a, = - ~ _ _ _ _  +---- +- 

1 + (M2 - 1)  B2 [i 1 + (M2 - 1) B2] [ 1 + ( M 2  - 1) B2I2 ' 

which consists of two components: one is identical with magnetic diffusion and 
the other gives an additional effect peculiar to viscosity. 

In  the five field regions described earlier (see figure 3) one has the following 
effects: 

(i) M2 < 1, B2 < 1; elliptic case, positive diffusion; 
(ii) M2 < 1, 1 < B2 < l/(l -M2); hyperbolic case, forward-facing waves; 
(iii) $12 < 1, I/( 1 - M2) < B2; elliptic case, positive diffusion; 
(iv) M2 > 1, B2 < 1 ;  hyperbolic case, un > 0,  a/ax, > 0, rearward facing 

(v) M2 > 1, B2 > 1; elliptic case, positive diffusion. 
waves; 

The first of these patterns (40a) is similar to (29u), with the viscous Reynolds 
number R replacing the magnetic Reynolds number R,. The second pattern is 
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again a diffusing MHD quasi-wave but the diffusion coeEcient aR has a rather 
complex form which reduces to the correct value f in the absence of a magnetic 
field. As one niight have expected, aR is positive in region (iv) and negative in 
region (ii) of figure 3. 

B2 

1 

0 1 M2 
FIGURE 3. Mach number ws A1fvi.n number plot of regions 

where plane standing MHD waves are possible. 

In  the case of one-dimensional flow making an arbitrary angle 8 with the 
undisturbed field direction the solution (40b) is equivalent to the differential 
equation 

DZ@ 1 + ~ 2 ~ 2  (( 1 + ~ 2 ~ 2 1 2  - 4 ~ 2 ~ 2  cos2 01: a2@ 

Dt2 2M2 ax2 
_____.__- 

"$, (41) 
1 + M2BZ( 1 - 2 cos2 8 )  

where D/Dt is the linearized substantial-derivative operator @/at) + @/ax). 
As in the case of electrical diffusion, the left-hand side gives the fast and slow 
MHD waves and the right-hand side gives the LCTl diffusion, showing in 
particular its dependence on orientation and on wave speed. For example, for 
the aligned field, one has 

(42a.) 
1 a 2 +  4 ~ a 2 $  ow-- - ____ 

Dt2 ~2 ax2 - 3~ ~t ax2 

and, for the crossed field, one has 

D2@ l-tM2B2a2$ - 4 D22$ 
Dt2 M 2  ax2 3RDtax2 

(426) 

(42 C) 

which displays the longitudinal nature of acoustic and normal MHD waves 
(through the multiplier +) and the transverse nature of the Alfven wave ( 4 2 b ) .  

The limiting case of small R for Alfvkn waves is similar to the case of small R, 
since the equations are identical. In  the case of MHD waves, the asymptotic 
forms for small R give 

8$AR-' = ( 7$2 - B2A;) & ((7$2 - B2A;)2 - 48$"*, (43) 

where A = A,&, Q = o + AIL Uk, h2, = h,Aj cos C I ~  cos ct j ,  
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Note that when the magnetic field disappears, (43 )  gives the two roots 

$ = +R-'A, $ = R-lA, (44 a, 6 )  

which are the two LCT solutions for small Reynolds numbers and which show 
that, in their initial stages, the quasi-waves are diffusion patterns independent 
of Mach number. 

In  the case of steady plane flow with aligned field, (43)  becomes 

8AR-1 = [( 7 - B2) ( 1  - 14B2 + B4)*] A,. (45)  

This equation has the same general structure as (22), but the structure of the 
diffusion constant is more complicated. When 7 - 4 4 8  < B2 < 7 +448, the dif- 
fusion constant is complex so that the wake is wavy and its phase structure 
depends on position, When B2 > 7 ,  the main part of the wake is directed upstream. 

6. Plasma flows with finite conductivity and viscosity 
This section considers the combined effects of viscosity and conductivity on 

an MHD flow. This involves a solution of the perturbation equation (7) with no 
terms omitted. 

If the determinant of the coefficients of iij is equated to zero, one obtains after 
some lengthy manipulation 

[$'( 1 - 8R) (1 - EM) - B2& hj cos c(i cog aj] 

x (&f2$4( 1 -€R)' (1  - E M )  -hkhk[$h2( 1 - 8 ~ )  [( 1 + 8,) ( 1  - 8 ~ )  f M2B2] 

- B2A,hj( 1 + 8,) cos C X ~  cos ~j]} = 0, (46 )  

where $ = W +hkUk, €B = hkh,/$R, EM = hkhk/$Ra,, 8, = +$hM2/R. 

Equation (46 )  includes all the previous equations as special cases. It shows that 
general diffusive MHD flow perturbations are split into a pair of Alfvh transverse 
quasi-waves, independent of Mach number and always directed along lines of 
magnetic field, and into two pairs of MHD quasi-waves (a fast set and a slow set) 
which are coupled in a rather complex way and only become uncoupled for large 
values of R,  RM. 

Consider first the set of Alfvh quasi-waves 

$h2( 1 - 6 ~ )  (1 - E M )  - B2hi hj COS ai cos aj = 0. (47 )  

This may be written as an equation for the Laplacian A = h,hk and as R or 
RM .+ 00 this reduces to (21) or ( 3 8 a ) .  If both R and RM are finite, then one 
obtains 

A A k A k  = $[$(R+RM)+ ($2(R-R~)2+4RRMB2hiA3.COSai COSCX~)~]; (48)  

when B2 --f 0 the system has two simple roots 

A = R $  and A = R M $ .  (49a)  

(496) 

For steady flow with aligned field, (48)  becomes 

A = QAl[R+RM+ ((R-RM)'+ 4RR,B2}*], 
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so that if B2 < 1 there are two wakes which diffuse downstream and if B2 > 1 
there are two wakes, one going downstream and the other upstream, each wake 
being given by a superposition of sources of type (23) where R,( 1 - B2) is 
replaced by the braced quantity in (49b). 

Note that (47) is symmetric in R and RM so that finite conductivity and 
viscosity affect Alfvh quasi-waves in the same way. If either R (or R,) goes 
to infinity while R, (or R)  remains finite, then the two roots become 

A = Rh,, A = RM( 1 - B2) A, for R 9 R,. (50) 

In  the case of unsteady wave propagation, for large R and Rnl, one finds the 
following two roots 

$(R + RM) R-'Rsl A = $2 - B2hihj cos ~i cos ~ j ,  (51b) 

which indicate that there is a diffusion from stream surfaces (51u) whose coeffi- 
cient is the sum of the Reynolds numbers and an Alfvhn quasi-wave (51b)  
whose diffusion coefficient is the harmonic mean of the magnetic and viscous 
Reynolds numbers. 

When the Reynolds numbers R and RM are small, then the asymptotic solu- 
tions take the form of simple diffusion patterns 

A = R$, A = R&f+. ( 5 2 )  

The general pattern of diffusing Alfvkn quasi-waves is therefore as follows. 
In  the early stages, there is a superposition of viscous and electrical parabolic 
diffusion from stream surfaces of discontinuity. In  the later stages (R, R, -+ co), 
there is the superposition of a diffusion pattern and an LCT-type Alfvkn quasi- 
wave of transverse nature, moving along the magnetic field lines. There is no 
longer a real split between viscous and electrical modes; rather, both diffusion 
patterns are mixed and carry both electromagnetic and mechanical perturbation 
components. 

The MHD modes satisfy the equation 

A{#2( 1 - eR) [ ( 1 + 8,) ( 1 - eM)  + M2B2] - ( 1 + aZ) B2hi hj cos ui cos uj> 

- ~ 1 2 4 4 ( 1 - ~ ~ ) 2 ( 1 - - ~ ~ )  = o (53) 

which is the second bracket of (46). If the diffusion terms eM, c,, 8, vanish, this 
is a fourth-order equation whose roots are the classical pairs of MHD fast and 
slow waves. One may expect that the introduction of diffusive higher-order 
terms will change the sharp (hyperbolic) waves to parabolic quasi-waves and 
add some diffusion modes. In  the MHD modes, the viscosity and the resistivity 
do not play the symmetrical role which they play in the Alfvh modes, and the 
equation for A($, hi, hi, cos ui, cos uj) is a cubic. 

To find the asymptotic mode shapes one seeks roots of two forms: one set 
based on the sharp waves and the other on the magnetic field lines; thus we let 

and 
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The first set of modes, substituted into (53), gives the solution 

287 

-~ 
[--- (w + A, Uk)2 - B2hihj cos ai cos aj 

+ %! (1 + M2B2) (w + A, Ukj2 - B2hi hi cos ai cos aj 

which essentially states that the diffusion coefficient is the sum of the magnetic 
and viscous coefficients obtained in (29b) and (40). 

The other two modes have the form 

A = $[( 1 + M2B2)  RAiI + R] ( s e a )  
and 

$2( 1 + M2B2)  - B2hihj COB ~ ( . i  cos aj = (( 1 + M2B2) R, + R) R-lRkl$A. (56b)  

The root (56a) is a simple shear layer diffusion from streamlines whose dif- 
fusion coefficient, in distinction from (51a) ,  depends on magnetic field strength; 
the root (56b)  is a diffusion from the vortex and current sheet associated with the 
cusp A of the Huyghens dia'gram and its diffusion coefficient is the sum of those 
of (29) and (40a). 

7. Conclusion 
In general, when small viscous and electromagnetic diffusion is considered, 

there exist six sets of small plane disturbance modes in an MHD flow. These are 
an Alfvkn wave, a fast and a slow MHD wave, and three modes for the diffusion 
of vorticity and electric current from stream surfaces. 

The third-order coefficients of dispersion of the Alfven and MHD fronts are 
direction-sensitive and take the correct limiting values as the fields become 
aligned, crossed or negligible. 

Two vorticity and current diffusion modes have different first-order dispersion 
coefficients related to the flow parameters ( M ,  B, R,,, R);  the third mode is an 
LCT third-order mode which propagates along the field lines with the velocity 
appropriate for the inner cusp in the Huyghens construction. 
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